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1. ADMINISTRATIVE OVERVIEW

1.1 Motivation

The goal of this LDRD effort was to research Discrete Differential Forms (DDF),
a new methodology for numerical solution of partial differential equations on 3D
unstructured grids. This research was motivated by the need for a provably stable,
provably conservative, higher-order accurate simulation method for electromagnet-
ics and coupled electro-thermal-mechanical systems. Contrary to popular belief,
LLNL’s electromagnetic modeling capability is not solely limited by computing
hardware, mesh generation, visualization, etc., but is in fact limited by the numer-
ical methods currently employed to solve the equations. The DDF methodology
developed under this LDRD effort will be the numerical core of a next-generation
unstructured grid electromagnetic code, and will ”pave the way” toward a coupled
electro-thermal-mechanical modeling capability.

1.2 History

LLNL has long been at the forefront of large-scale scientific computing. Not only
does LLNL possess the world’s fastest computers, but LLNL simulation codes such
as ALE3D (mechanics), Ardra (radiation transport), Jeep (quantum mechanics),
and sPPM (fluid/gas dynamics) set the standard for large-scale scientific comput-
ing. Unfortunately, Computational Electromagnetics (CEM) at LLNL has not kept
pace with the other disciplines. While there exits a plethora of special-purpose,
single-use CEM codes, LLNL does not currently have a robust, general purpose,
unstructured grid CEM code that is suitable for quantitative engineering analy-
sis. Previous research efforts in time-domain unstructured grid CEM within the
Electronics Engineering Department have led to the development of MFV (Madsen
1985-1990), DSI (Madsen, 1990-1997), and TIGER (Steich, 1997-2000) but unfor-
tunately the numerical methods used in these codes have been demonstrated to be
numerically unstable for most classes of problems. It can be shown that the instabil-
ity is not due to the time integration scheme (and hence cannot be fixed by switching
to an implicit method) but is due to improper discretization of the curl operator.
In addition, the numerical methods used in these codes cannot easily be extended
to higher-order approximations, they do not accurately model inhomogeneous ma-
terials, and they cannot be directly applied to coupled electro-thermal-mechanical
problems. On the other hand, the DDF methodology we developed does not suffer
from these limitations.

Table I. Comparison of the numerical properties of the proposed DDF versus the DSI method

used in existing CEM codes.

existing DSI/TIGER codes proposed DDF

provably stable NO YES

provably conservative NO YES

higher order NO YES

EM boundary conditions NO YES

multiphysics capable NO YES

Our methodology for CEM is based upon the theory of differential forms. While
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the theory of differential forms is mature and is often used in theoretical physics,
it has been slow to percolate down to computational engineering. In simple terms,
we will develop Discrete Differential Forms (DDF), which are finite element basis
functions defined on a mesh. These discrete differential forms mimic the properties
of the true continuous differential forms. The basis functions are then used to
discretize the partial differential equation yielding a discrete system of equations
that can be solved on a computer. The key point is to acknlowledge that different
physical quantities (e.g. electric field, magnetic flux, electric current, etc.) have
different mathematical properites (contiuity, differentialbility, etc.) and therefore
in a finite element simulation code different basis functions must be used for the
different fields in order to “get the physics right.” Some of these different properties
are shown in Table II below.

Table II. Distinguishing characterestics of Discrete Differential Forms. For each form we show the
corresponding deriviative and intergral that is associated with the form, as well as the physcical
quantities that can be discretized by the given form.

Form Field Continuity Derivative Integral

0-form electric potential Φ gradient point total

temperature T

1-form electric field E curl line tangential
magnetic potential A

2-form magnetic flux B divergence surface normnal
electric current J

3-form charge density ρ N/A volume none
energy density Ψ

Preliminary research has shown that discretizing an E-B formulation of Maxwell’s
equations using a differential forms based approach yields a provably stable, prov-
ably charge and energy conserving discretization of the time-dependent Maxwell’s
equations. The EMSolve code developed by Daniel White and Joe Koning is an
example of a DDF code. This code currently uses four different types of finite
element basis functions: the classic nodal basis functions are used for continuous
scalar quantities such as the electrostatic potential (a 0-form field), H-curl and
H-div vector basis functions are used for the electric field (a 1-form) and the mag-
netic flux density (a 2-form) respectively, and piecewise constant functions are used
for charge density (a 3-form). These basis functions are illustrated in Figure 1
for a tetrahedron. The EMSolve code can be used to solve a variety of electro-
magnetic problems including electrostatics, magnetostatics, electromagnetic wave
propagation, and electromagnetic eigenvalue problems. The EMSolve code provides
a provably stable and conservative solution of Maxwell’s equations. The primary
limitation of this code is that it uses only first-order finite element basis functions,
and hence a highly resolved mesh is required for accurate field calculations. Our
primary goal of this LDRD effort was to develop higher-order DDF basis functions
that will allow for the efficient simulation of electrically large structures, such as
photonic devices, without the need for a prohibitively fine mesh. A secondary goal
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Fig. 1. Lowest order Discrete Differential Forms for a tetrahedron. The upper left function is a
0-form. The upper right function is a 1-form. The lower left function is a 2-form. The lower right
function is a 3-form. All four of these basis functions are used, simultaneously, in the EMSolve

code.

is research the application of DDF methods to coupled electro-thermal-mechanical
problems.

1.3 Scope

To summarize, our goal was to research and develop a Discrete Differential Form
(DDF) methodology for unstructured grid computational electromagnetics. This
methodology would be more robust than existing methods in the sense that it would
be both stable and conservative. In addition it would be higher-order accurate, en-
abling the efficient simulation of electrically large problems. The three components
of our plan were:

I Research higher-order DDF-based finite element basis functions of form 0-
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form, 1- form, 2-form, and 3-form for unstructured meshes. The intent is
to develop a unified mathematical description of higher-order DDF finite
element basis functions and to mathematically analyze, to the extent possi-
ble, the numerical properties (stability, conditioning, dispersion error, etc.)
of the DDF methodology.

II Develop a software library that encapsulates the DDF-based basis functions
and differential operators in a package that can easily be used by applica-
tion developers. We intend that this library could be openly released to
universities for educational and/or research purposes, and perhaps licensed
to industry.

III We will seek out interesting electromagnetic and coupled electro-thermal-
mechanical problems and use our DDF methodology to solve these prob-
lems. This is an important part of our exit plan, as we need to demonstrate
the value of our approach on real problems in order to secure follow-on
funding. This will be performed in collaboration with LLNL Engineering.

1.4 Conclusion

Our plan was ambitious, but nevertheless we completed tasks I and II above. On
the theoretical aspects of our research we collaborated with Prof. Ralf Hiptmair
from the Swiss Federal Institute of Technology, Zurich. With Prof. Hiptmair we
defined the key characteristics of higher-order discrete differential forms and also
constructed very general definitions of degrees-of-freedom and associated transfor-
mation rules. We also spent considerable time investigating the conditioning of
higher-order basis functions, which resulted in a novel well-conditioned “spectral”
element for electromagnetics. Much of this research is contained in the Technical
section below.

We completed a software library named FEMSTER, this library contains DDF
basis functions, integration rules, and bilinear forms. The library is written in the
C++ language and is documented using the Doxygen package. The documentation
is on-line at

http:\\www.llnl.gov\casc\projects\femster.

The source code for the library has been given to collaborators in LLNL Engi-
neering, at Sandia National Laboratory, at University of Houston, and at Brigham
Young University. UC Davis student Rob Rieben will continue to use the FEM-
STER library in his Ph.D. research.

We began to validate our higher-order DDF approach by solving canonical prob-
lems in electrostatics, electromagnetics, and acoustics. We did in fact verify the
predicted higher-order rates of convergence for these canonical problems. Some of
these results are shown in the Technical section below. However more work needs to
be done in the area of validation and analysis. For example, we have yet to quantify
the computational efficiency of employing higher-order basis functions, i.e. while
using a higher-order bases significantly reduces the number of unknowns required
to obtain a prescribed accuracy, the resulting linear system becomes more difficult
to solve. There is likely to be some particular order of approximation that yields
an optimal accuracy vs. CPU time “sweet spot”. As a second example of further
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research, we suggest that the ideal situation is to employ adaptivity so that the
computer program itself determines the optimal order of approximation during run
time.

Some of the material in this final report was presented at the 2002 IEEE APS
Annual Meeting in San Antonio (White and Rieben, “Generalized High Order In-
terpolatory 1-Form Bases for Computational Electromagnetics”), and at the 2002
SIAM Annual Meeting in Philadelphia (White and Koning, “A Discrete Forms
Framework for Wave Equations “). We were also pleased to be invited to present
our research at the Special Session on Geometrical Methods for Discrete Electro-
magnetics at the 2003 IEEE APS Annual Meeting in Columbus. In addition, a more
concise version of this report was accepted for publication in the Special Issue on
Computational Electromagnetics of the journal Computer Methods in Engineering
and Science. In addition, we are preparing a paper to be submitted for publication
in the ACM Transactions on Mathematical Software, and a second paper focusing
on applications of our methodology toward photonics problems is being written for
publication in the Journal of Computational Physics.
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2. TECHNICAL INTRODUCTION

The equations of electromagnetics can be simply and elegantly cast in the language
of differential geometry, more precisely in terms of differential forms or p-forms
[Deschamps 1981], [Baldomir 1986], [Bossavit 1998]. In this geometrical setting,
the fundamental conservation laws are not obscured by the details of coordinate
system dependent notation; and, the governing equations can be reformulated in a
more compact and clear way using well known differential operators of the exterior
algebra such as the exterior derivative, the wedge product, and the Hodge star op-
erator, see [Abraham et al. 1996] for an introduction to differential forms. In this
context, a natural framework for the modeling of physical quantities is also pro-
vided. For example, the electric potentials can be represented by 0-forms; electric
and magnetic fields by 1-forms; electric and magnetic fluxes by 2-forms; and, scalar
charge density by 3-forms.

In the context of Galerkin approximations, the choice of the finite element space
plays a crucial role in the discretization of partial differential equations. For in-
stance, in numerical approximations of the magnetic and electric field intensities,
H(curl) -conforming finite element spaces (or edge elements) are preferred over
traditional nodal vector spaces since they eliminate spurious modes in eigenvalue
computations; they are able to properly model the jump discontinuity of the field
across material discontinuities; and, they enforce tangential continuity of the vector
field which corresponds to the exact physical continuity properties of the electric
field. Edge elements were introduced in [Nédélec 1980] and [Nédélec 1986] as a gen-
eralization of the mixed finite element spaces introduced by P.A. Raviart and J.M.
Thomas in [Raviart and Thomas 1977] for H(div) -conforming methods, for an
extensive analysis of several H(curl) and H(div) -conforming methods see [Brezzi
and Fortin 1991].

Recently, Hiptmair, motivated by the theory of exterior algebra of differential
forms, presented a unified framework for the construction of conforming finite el-
ement spaces. Remarkably, both H(curl) and H(div) conforming finite element
spaces and the definition of their degrees of freedom and interpolation operators
can be derived within this framework, see [Hiptmair 1999] for more details

Our primary motivation for the development of FEMSTER lies on H(curl) and
H(div) -conforming finite element discretizations, using the theoretical framework
proposed by Hiptmair. In our terminology, a discrete differential p-form is a finite
element basis, typically consisting of polynomials. The discrete form is used as
the finite element space in the discretization of a vector field. Given a physical
law expressed in the language of differential forms, it is quite straightforward to
discretize the problem using our class library.

The second focus of this software is on high-order discretization which can reduce
the mesh size, memory usage, and CPU time required to achieve a prescribed
error tolerance. This is particularly true for electrically large problems due to
numerical dispersion. The Galerkin procedure applied to wave equations suffers
from numerical dispersion, which means that the computed phase velocity differs
from the physical phase velocity and phase error builds up linearly with respect
to distance and time. For the popular lowest order edge elements, it is known
that the numerical dispersion relation is second order accurate [Warren and Scott
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1994], [Warren and Scott 1995], [White 2000]. Second order accuracy may seem
adequate, but for an electrically large problem the phase error may be such that
the global error is 100 percent, although the local truncation error is quite small.
The phenomena of the global error being significantly greater than the local (or
optimal) error for a Galerkin solution of wave equations is sometimes referred to
as the pollution effect. This has been more precisely explained in [Babuska et al.
1995], [Babuska et al. 1997].

An object-oriented programming (OOP) paradigm provides a natural and straight-
forward way of achieving our goals in a single computational framework. Our im-
plementation benefits from three OOP concepts: abstract data types, inheritance,

and data encapsulation. We use abstract base classes as computational devices to
represent general mathematical objects such as elements, integration rules, poly-
nomial bases, etc. The definition of abstract interfaces models the functionality of
the class at the highest level of abstraction, keeping implementation details to the
concrete derived classes. Typical methods included in the interface are evaluation
of basis functions and their derivatives, local and global coordinate transformations,
and generation of mass and stiffness matrices.

The concept of inheritance avoids the redevelopment and testing of existing code,
by reusing base class members (data and methods). Moreover it allows the possi-
bility of extending the library by including user-defined data types which can be
derived from the existing base classes. Finally, by hiding internal details while pro-
viding a public interface, data encapsulation prevents unexpected modifications of
data, making the code more robust and modular.
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3. PDE’S AND EXTERIOR ALGEBRAS

We begin with the generic boundary value problem stated in the language of dif-
ferential forms from [Hiptmair 2001]. We assume a 3-dimensional domain Ω with
piecewise smooth boundary ∂Ω partitioned into ΓD, ΓN , and ΓM . The problem
statement is

du = (−1)pσ, dj = −Ψ + Φ in Ω (1)

TDu = f on ΓD, TN j = g on ΓN (2)

j = ?α σ, Ψ = ?γ u in Ω (3)

TM j = (−1)p ?β TMu on ΓM . (4)

Here u is a (p − 1)-form, σ is a p-form, j is a (3 − p)-form, and both Ψ and Φ
are (3 − p + 1)-forms, where 1 ≤ p ≤ 3. The variable Φ is a source term. In
(1) the operator d is the exterior derivative which maps p-forms to (p + 1)-forms.
In the boundary conditions (2) and (4) the symbol T denotes the trace operator,
where the trace of a p-form is an integral over a p− 1-dimensional manifold. In (3)
and (4) the ? symbol denotes the Hodge-star operator, which converts p-forms to
(3− p)-forms and typically involves material constitutive properties. Equations (1)
and (3) can be combined to yield the general second-order elliptic equation

(−1)pd ?α du = − ?γ u+ Φ. (5)

The wedge product of differential forms is used in the definition of bilinear forms.
The wedge product of a p-form ω and a q-form η is a (p+ q)-form ζ

ωp ∧ ηq = ζ(p+q), p+ q ≤ 3. (6)

If p+ q = 3 then ωp ∧ ηq is an volumetric energy density like quantity and can be
integrated over a volume to yield energy. If p+ q = 2 then ωp ∧ ηq is a flux density
like quantity and can be integrated over a surface to yield net flux.

A Galerkin finite element solution of the generic second-order equation (5) will
require bilinear forms. Using the exterior algebra, the bilinear forms required in the
Galerkin finite element method can be easily formulated from the general second-
order equation (5) by taking the wedge product with an (l − 1)-form v and inte-
grating over the volume Ω,

∫

Ω

(−1)ld ?α du ∧ v = −

∫

Ω

?γ u ∧ v +

∫

Ω

Φ ∧ v. (7)

Using the integration-by-parts formula
∫

Ω

dω ∧ η + (−1)l

∫

Ω

ω ∧ dη =

∫

∂Ω

ω ∧ η (8)
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yields the two key symmetric bilinear forms

a(u, v) =

∫

Ω

?α (du) ∧ dv, (9)

b(u, v) =

∫

Ω

?γ u ∧ v. (10)

With the definition of the generic Hilbert space

H(p) =

{

u ∈ Ωp :

∫

Ω

u ∧ ?u+

∫

Ω

du ∧ ?du <∞

}

, (11)

the Galerkin form of the generic second-order equation (5) can now be expressed
as

Given the source function Φ and the boundary condition g,
find u ∈ {u ∈ H(p), TD(u) = f}
such that a(u, v) = b(u, v) + c(u,Φ) + d(u, g)
for all v ∈ {v ∈ H(p), TD(v) = 0}

(12)

where the source term and boundary condition term are given by

c(u,Φ) =

∫

Ω

u ∧ Φ (13)

d(u, g) =

∫

∂Ω

?α du ∧ g. (14)

With these generic bilinear forms, source terms, and boundary conditions we can
construct a wide variety of model equations that can be solved via the finite element
method. The key point is that in order for the finite element procedure to work, it
is necessary to use the proper p-form basis functions when discretizing the above
bilinear forms.

We are also concerned with time dependent phenomena. The time derivative does
not effect the degree of a form. In the diagram below we show the time-dependent
Maxwell’s equations, where d denotes the spatial derivative and dt denotes the time
derivative and converging arrows denote summation. In these diagrams φ is the
scalar potential 0-form, the 1-forms A, E, and H are the magnetic vector potential,
the electric field, and the magnetic field, respectively; the 2-forms B, D, and J
are the magnetic flux density, the electric flux density, and the electric current
density, respectively; and ρ is the scalar charge density 3-form. The left diagram
encompasses Faraday’s law dE − dB/dt = 0, Coulomb’s law for the magnetic field
dB = 0, and the fact that the electric field E can be written in terms of potentials as
E = dφ− dA/dt. The right diagram encompasses Ampere’s law dH − dD/dt = J ,
Coulomb’s law for the electric field dD = ρ, and the continuity equation dJ −
dρ/dt = 0. The two diagrams are connected by the constitutive relations D = ?ε E
and B = ?µ H.
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0-forms : φ




y
d

1-forms : A
−dt

−−−−→ E H




y
d





y
d





y
d

2-forms : B
−dt

−−−−→ 0 D
−dt

−−−−→ J




y
d





y
d





y
d

3-forms : 0 ρ
−dt

−−−−→ 0

A wave equation can be derived by combining the two diagrams and solving for
E,

dt dt ?ε E = d?µ
−1dE − dt J. (15)

This wave equation resembles the generic second order equation (5) with the addi-
tion of temporal derivatives, the same bilinear forms (9) and (10) are required for
either the elliptic problem or the wave equation.

From the two Maxwell diagrams, Poynting’s theorem of energy conservation can
be derived by combining the appropriate wedge products and integrating over a
volume,

∫

Ω

J ∧ E +

∫

Ω

E ∧ ?εdtE +

∫

Ω

H ∧ ?εdtH +

∫

∂Ω

E ∧H = 0. (16)

The first term is the power deposited in the volume by the independent current
source J . The second and third term represent the time rate of change of stored
electric and magnetic energy, respectively. In each of the these terms the integrand
is a 3-form volumetric power density that can be integrated over a volume. The
fourth term represents the net power flowing thorough the surface enclosing the
volume, where the integrand is a 2-form flux density known in engineering as the
Poynting vector.
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4. FEMSTER : A FINITE ELEMENT CLASS LIBRARY

The philosophy of the FEMSTER library is derived from the formulation of an
abstract conforming finite element method, see [Ciarlet 1978]. From the implemen-
tation point of view, such a formulation is uniquely determined by the 4−tuple
(Σ,P,A,Q) where:

—Σ is a reference element.

—P is a finite element space defined on Σ .

—A is the set of degrees of freedom.

—Q is a quadrature rule defined on Σ .

This abstract formulation can be easily translated into a practical modular code
by using an Object-Oriented Programming (OOP) paradigm. The C++ program-
ming language, [Stroustrup 1991], was used in the current implementation. In the
following subsections we describe the classes that form the core of the FEMSTER
library.

4.1 The class Element3D

The abstract class Element3D describes an interface of a reference element. It con-
sists of a small set of methods that provide all the geometrical information needed
in finite element computations. In Table III we present the complete interface with
a brief description of each method.

Table III. Interface of the Element3D class
Method Description

getOrder() get the order of geometry
getNodes() get the coordinates of the nodes

setNodes() set the coordinates of the nodes
jacobian() get the Jacobian matrix at a point

localToGlobal() get global coordinates
globalToLocal() get local coordinates

The library supports the most common types of reference elements: tetrahedron,
hexahedron and prism. In Figure 2 we show the inheritance class diagram.

Element3D

Hexahedron Prism Tetrahedron

Fig. 2. Element3D class inheritance

The geometry of an arbitrary element is uniquely defined by the physical coor-
dinates of its nodes, its geometrical order and a local mapping that transforms the
reference element onto the actual element. These are commonly known in the finite
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element literature as sub/iso/- parametric elements, see for example [Ciarlet 1978].
We use the term vertex to denote the particular nodes that define the end points of
edges and the corners of faces and elements, therefore a tetrahedron always has 4
vertices but may have many more nodes if it is a curved element. We also assume
that every node has a unique global integer ID associated with it. All the elements
of a same type and having the same geometrical order are topologically equiva-
lent to a single reference element and can be represented through a unique object.
Thus only one instantiation of a concrete reference element is needed to represent
a block of elements that are topologically equivalent. Geometrical information of a
particular element is obtained by, first, setting the coordinates of each node in the
reference element, and; then querying this element for the desired information. In
Figure 3 we show the topological connectivity standard that we have adopted for
our reference elements, this is the required ordering of the vertices assumed by our
implementation of the element classes. Each element is defined by a set of generic
vertices (implemented as integer IDs). In addition to the connectivity of the refer-
ence element, standards must also be adopted for local edge and face orientations
on the reference elements. This information is summarized in Tables IV and V.

Fig. 3. Topology used to define the reference elements.

In the following lines of code we illustrate how to get the Jacobian matrix of all
the elements on a block of linear tetrahedrons.

Element3D* element = new Tetrahedron(1);

R3 localPoint = R3(0.0,0.0,0.0);

for (int i = 0; i < numElementInBlock; ++i)

{

R3xR3 JacMat;

R3* nodePtr = nodeArray + i*4;

element->setNodes(nodePtr);

element->jacobian(localPoint,JacMat);

...
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Table IV. Local edge connectivity for the reference elements
Edge Hexahedron Prism Tetrahedron

1 {a, e} {a, d} {a, b}

2 {d, h} {b, e} {a, c}

3 {b, f} {c, f} {a, d}

4 {c, g} {a, b} {b, c}

5 {a, d} {b, c} {b, d}

6 {e, h} {c, a} {c, d}

7 {b, c} {d, e} -

8 {f, g} {e, f} -

9 {a, b} {f, d} -

10 {d, c} - -

11 {e, f} - -

12 {h, g} - -

Table V. Local face connectivity for the reference elements
Face Hexahedron Prism Tetrahedron

1 {a, b, c, d} {c, a, d, f} {a, b, c}
2 {e, f, g, h} {a, b, e, d} {a, b, d}

3 {a, b, f, e} {b, c, f, e} {a, c, d}
4 {d, c, g, h} {a, c, b} {b, c, d}
5 {a, d, h, e} {d, e, f} -
6 {b, c, g, f} - -

}

4.2 The class IntRule3D

The computation of local integrals arising in stiffness and mass matrices and lo-
cal load vectors is performed numerically using high order integration rules. The
abstract class IntRule3D describes a general interface for an integration rule of an
arbitrary three dimensional reference element. In Table VI we present the interface
and in Figure 4 the inheritance class diagram.

Table VI. Interface for integration rules in 3D
Method Description

getNumPts() get number of quadrature points

getOrder() get order of exactness

getPoints() get array of integration points

getWeights() get array of integration weights

getRegion() get region tag
getIntegral() get approximation of the integral

The concrete classes in the bottom of Figure 4 are implementations of high
order integration rules for the three types of elements currently available in the
library. These are based on tensor products of one dimensional weighted Gauss-
Jacobi quadratures. While this process allows to control the degree of exactness
of a quadrature rule, in general, it may not produce optimal integration rules, i.e.



Discrete Differential Forms · 15

IntRule3D

IntRules

HexahedronIntRule PrismIntRule TetrahedronIntRule

Fig. 4. IntRule3D class inheritance

with a minimum number of points. However the class has been designed to be
extensible, the user can provide its own integration rules if desired.

The following lines of code illustrate how to compute the integral of a function f
on a single prismatic element using an integration rule which is exact for polyno-
mials of degree less or equal than 2.

R3 nodes[] = {...};

Elment3D * element = new Prism(1);

assert( element != 0 );

element->setNodes(nodes);

IntRule3D * intRulePtr = new PrismIntRule(2);

int numPoints = intRule->getNumPts();

const R3 * point = intRule->getPoints();

const double * weight = intRule->getWeights();

double sum = 0.0;

for (int k = 0; k < numPoints; ++k)

{

R3 x; element->localToGlobal(point[k],x);

sum += f(x)*weight[k]*element->jacobian(point[k]);

}

Observe that by using the abstract interface the same code will perform the same
computation on a different type of element. The only necessary changes are the
creation of the reference element and its corresponding quadrature.

4.3 The class p-Form

4.3.1 Polynomial spaces. The first step in a finite element approximation is to
choose the appropriate finite element space P from which the basis will be con-
structed. Usually this space consists of a particular set of polynomials. Typical
examples are the nodal or Lagrangian polynomial space for the standard H1 con-
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forming method, [Ciarlet 1978]; the edge elements proposed by Nédélec for H(curl)
- conforming methods, [Nédélec 1980; 1986]; and, the face elements proposed by P.A
Raviart and J.M Thomas for H(div) - conforming methods, [Raviart and Thomas
1977]

When implementing the finite element space P in the context of differential forms,
the explicit formulation of the space depends on the p-form and the topology of the
reference element Σ . The construction of the finite element space P is not unique,
we choose a construction that leads to a simple and efficient implementation. We
use polynomials similar to those described in [Graglia et al. 1997] and [Graglia
et al. 1998] as a primitive basis. However these are constructed on the reference
element Σ rather than in the physical coordinate system. The actual bases used
in the finite element procedure are written as a linear combination of the primitive
basis. For example, non-uniform interpolatory functions, moment-based functions,
orthogonal functions, etc. can all be expressed in terms of the primitive basis.

4.3.2 Degrees of freedom. The set A of degrees of freedom is a finite subset of
P ′, (i.e. the set of linear functionals from P onto < [Ciarlet 1978]), and satisfies
three important properties; namely

—Unisolvence: {αi} is dual to the finite element space P ; i.e. there exists a set
{wj} ⊂ P such that αi(wj) = δi,j .

—Invariance: degrees of freedom remain unisolvent upon a change of variables;
this implies they are not affected by the pullback operation; i.e. α̂i ◦ Φ∗ = αi

(see section 4.4).

—Locality : the trace of a basis function on a sub-simplex is determined by degrees
of freedom associated only with that sub-simplex.

The set A is defined in terms of moment integrals over sub-simplices of the reference
element Σ [Hiptmair 1999]. If we denote a sub-simplex of the reference element Σ
of dimension n as Σn, then the generalized form for the linear mapping is given by

{αi} = {w 7→

∫

Σn

w ∧ qn}, (17)

where p ≤ n ≤ 3 and qn is an (n − p)-form weighting polynomial of n-variables
defined over the sub-simplex Σn.

As an example, consider the degrees of freedom for 1-forms. For this case, p = 1
and we have the following three sets of moments which will require line integrals
over edges weighted by 1-dimensional 0-forms (i.e. 1-dimensional scalar functions),
surface integrals over faces weighted by 2 dimensional 1-forms (i.e. vector functions
defined in a plane) and volume integrals over the element weighted by 3-dimensional
2-forms (i.e. vector functions defined in a volume).

α(w) =

∫

ê

(w ◦ Φ) · ∂ΦT (~tq),

α(w) =

∫∫

f̂

(w ◦ Φ) · ∂ΦT (~n × q),

α(w) =

∫∫∫

~v

(w ◦ Φ) · ∂ΦT q,
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where ~t denotes the unit tangent vector for each of the edges of Σ and ~n denotes
the unit normal vector for each of the faces of Σ . By appropriately using the
iso-parametric mapping Φ and its derivative ∂Φ, we can perform the integrals over
the reference element, while maintaining generality of the function w (i.e. w can
be defined over an arbitrary element).

While this formal definition is sufficiently general to define degrees of freedom of
arbitrary type, we find that in practice there are simplifications that can be made
to this definition for the particular case of interpolatory bases that can significantly
improve computational performance. In this case, the integral forms of the degrees
of freedom are replaced with simple point evaluation operations. For example, the
scalar valued 0-form interpolatory bases can have their degrees of freedom reduced
to the familiar form

{αi(w)} = w(Φ(xi)), (18)

where xi is a particular interpolation point in the reference coordinate system.
Similarly, the vector valued 1-form interpolatory bases can have their degrees of
freedom reduced to the form

{αi(w)} = w(Φ(xi)) · ∂ΦT (~ti), (19)

where xi is a particular interpolation point in the reference coordinate system and
~ti is an “interpolation vector” associated with the point xi. Table VII summarizes
these simplified linear functionals for interpolatory degrees of freedom.

Table VII. Simplified Degrees of Freedom for Interpolatory Bases
Form Linear Functional

0-forms {αi(w)} = w(Φ(xi))

1-forms {αi(w)} = w(Φ(xi)) · ∂ΦT (~ti)
2-forms {αi(w)} = w(Φ(xi)) · |∂Φ|∂Φ−1(~ni)
3-forms {αi(w)} = |∂Φ|w(Φ(xi))

Using this general approach, we can construct a discrete differential p-form ba-
sis of order k in the following manner. We begin by generating a primitive basis
W = {wj}. This primitive basis can be made in a number of different ways depend-
ing on the degree of the form and topology of the element. For example, a primitive
basis on a reference tetrahedral element can be made using the interpolatory pro-
cedure of [Graglia et al. 1997], while for a reference hexahedron, we can form a
primitive basis by taking tensor direct products of 1-dimensional Lagrange interpo-
latory polynomials. In order to construct a new basis (non-uniform interpolation,
hierarchical, etc.) from the primitive basis we first formulate the linear function-
als for A using the appropriate weighting polynomials. The choice of weighting
polynomials in the formal definition of the degrees of freedom will determine the
type of the new basis. For example, by choosing orthogonal weighting polynomials,
the new basis will be hierarchical. We then apply the projection operation to the
primitive basis; i.e. we construct the matrix

Vi,j = αi(wj); wj ∈W (20)



18 · Castillo Koning Rieben Stowell White

This system, which is similar to a Vandermonde matrix, is a linear mapping which
expresses the new basis in terms of the primitive basis and will have a rank equal
to the dimension of the primitive basis. We know from the definition of the degrees
of freedom that the unisolvence property must hold for the new basis; so in order
to satisfy this requirement, we must find the inverse of the Vandermonde matrix.
The newly defined basis, which we will denote as F will then have the form:

F = V −1W (21)

Therefore, the newly defined basis will be a linear combination of the primitive
basis that spans the space P (i.e. satisfies the unisolvence property). While it may
seem computationally expensive to invert a matrix in order to get the new basis,
it should be noted that this is a one time cost as the inverse of the Vandermonde
matrix can be stored and used over and over as necessary.

4.3.3 p-Form class interface. We have a class hierarchy for each of the p-form
bases, the hierarchy for the 0-form class is shown in Figure 5. Concrete classes
are presented in the lowest level of the tree. The other p-forms have a similar
inheritance diagram. Our Silvester-Lagrange (SL) bases are similar to the bases
defined in [Graglia et al. 1997] which use equidistant and shifted equidistant inter-
polation points. The difference between our SL bases and the bases proposed in
[Graglia et al. 1997] is that ours satisfy the properties in Table VII. The uniformly
spaced interpolatory bases are suitable for low order approximations, i.e., k = 1
to 4. It is well known that this particular choice of interpolation points produce
badly conditioned mass and stiffness matrices when high order approximations are
used. For this reason we have implemented spectral classes that use arbitrary sets
of interpolation points, typically Gauss-Lobatto or Tchebyschev points. As an ex-
ample, figure 6 shows the number of iterations required for a conjugate gradient
algorithm to solve the linear system (with an error tolerance of 10−12) arising from
the discretization of Poisson’s equation using a 0-form basis on a hexahedral mesh
(see section 5.1). In this example we show the results for three different types of
interpolatory bases. Note that the results for the SL basis show exponential growth
of condition number as the approximation order is increased while the two spectral
bases show logarithmic growth. The user can also experiment by passing their own
set of interpolation points into the constructor.

p0FormBase

Hex0FormBase Pri0FormBase Tet0FormBase

Hex0FormExtCheby Hex0FormSL Pri0FormSL Pri0FormSpectral Tet0FormSL Tet0FormSpectral

Fig. 5. 0-Form class inheritance
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Fig. 6. Iteration count for conjugate gradient solution of Poisson’s equation using three different

interpolatory bases.

The interface of a p-form includes methods that can be used in the computation
of the local matrices and vectors, such as methods to evaluate basis functions and
their derivatives at an arbitrary point, to evaluate the interpolate and its derivative
and to compute the expansion of the interpolate of a given function. In Table VIII
we show part of the interface of a p-form class.

Table VIII. Interface of a p-form class
Method Description

getOrder() get the order of the p-form
getDim() get the dimension of the p-form

setElement() set the element pointer
clearElement() clear the element pointer
getConnectivity() get the connectivity

localEvaluate() φi(x), i = 1, . . . , n

localEvaluateD() dφi(x), i = 1, . . . , n

localInterp() Π(f)(x)
localInterpD() dΠ(f)(x)

project() αi where Π(f) = Σαiφi

The method localEvaluateD() computes the action of a differential operator on
the basis functions at a given point. This operator is the exterior derivative and
is uniquely determined by the p-form, see [Abraham et al. 1996], [Burke 1985] for
a classical geometrical approach. In particular, this operator refers to the gradient
for 0-forms; the curl for the 1-forms; and finally, the divergence for the 2-forms.
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Fig. 7. Condition number of p-form mass matrix using three different sets of interpolation points.

To facilitate the assembly of global mass and stiffness matrices, the basis functions
are locally sorted in the following order : nodal basis functions, edge basis functions,
face basis functions, and interior basis functions. The getConnectivity() method
returns the number of basis functions per vertex, per edge, per face, and per cell.

4.4 Bilinear forms

The purpose of this class is to provide an interface to compute mass and stiffness
matrices as well as load vectors. We present the derivation of the global stiffness
matrix using the exterior algebra of differential forms.

Let Th be a triangulation of a physical domain Ω using tetrahedral, hexahedral,
or prismatic elements. We consider the general bilinear form a(·, ·) defined by

a(u, v) =

∫

Ω

∗α(du) ∧ dv, (22)

where ∗α is the Hodge operator associated to a symmetric definite positive tensor
α, which typically represents material properties such as electric and magnetic
permeabilities and conductivities; and, u and v are both p-forms. Then by using
the properties of the Hodge operator and the local change of variables given by the
iso-parametric mapping Φ(T̂ ) = T , we re-write the bilinear a(·, ·) from equation
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(22) as follows

a(u, v) =

∫

Ω

∗α(du) ∧ dv (23)

=
∑

T∈Th

∫

T=Φ(T̂ )

∗α(du) ∧ dv (24)

=
∑

T∈Th

∫

T̂

Φ∗ (∗α(du) ∧ dv) |Φ| (25)

=
∑

T∈Th

∫

T̂

∗α·Φ (Φ∗(du)) ∧ Φ∗(dv)|Φ|. (26)

Similarly the mass matrix can be obtained using the following bilinear form

b(u, v) =

∫

Ω

∗(u) ∧ v, (27)

and after some manipulations, we have

b(u, v) =
∑

T∈Th

∫

T̂

∗ (Φ∗(u)) ∧ Φ∗(v)|Φ|. (28)

Equations (26) and (28) show that all calculations for the mass and stiffness
matrices are performed on a standard reference element T̂ (i.e. the unit cube,
tetrahedron, or prism). Results are then transformed to physical mesh elements
(of arbitrary curvature) via a set of well defined transformation rules based on the
properties of differential forms. These rules are summarized in Table IX. Given
these transformations the bases need only be evaluated on the reference element
and transformed accordingly. This gives rise to a very computationally efficient
algorithm for computing finite element approximations. For a given element topol-
ogy and basis order, the basis functions only need to be computed once. Then,
for every element of the same topology in the mesh, the results from the reference
element can simply be mapped according to the transformation rules. This can
significantly reduce computational time for a typical finite element computation.
In addition, integration over the reference element is much simpler and can be done
exactly using Gaussian quadrature of the appropriate order.

Table IX. Transformation rules Φ∗

Φ∗(u) Φ∗(du)

0-forms u ◦ Φ ∂Φ−1(du ◦ Φ)

1-forms ∂Φ−1(u ◦ Φ) 1

|∂Φ|
∂ΦT (du ◦ Φ)

2-forms 1

|∂Φ|
∂ΦT (u ◦ Φ) 1

|∂Φ|
(du ◦ Φ)

In addition, several levels of efficiency have been added in the implementation of
this class. The local mass and stiffness matrices are symmetric therefore only one
triangular block is actually computed and the rest of the entries are copied. For
tetrahedrons of order 1, the Jacobian is constant so there is no need to compute it
at each integration point.
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Below, in Table X, we show the common interface of a bilinear p-form.

Table X. Interface of the Bilinear-pForm class
Method Description

setpForm() set a specific 0-form

setIntRule() set the integration rule

setElement() set a specific element3D

initialize() initialize internal data

getMassMatrix() get the local mass matrix

getStiffnessMatrix() get the local stiffness matrix

getLoadVector() get local load vector

getUError() get the local error

getQError() get local error of derivative

4.5 Permutations

When assembling a global mass or stiffness matrix, it is imperative that all ele-
ments which share a sub-simplex agree on the ordering and possibly direction of
the degrees of freedom associated with that sub-simplex. One approach is to com-
pute the basis functions directly on the actual element, for every element in the
mesh. We disregarded this approach as it is extremely inefficient for higher-order
bases. Instead, our basis functions are computed locally at the quadrature points
of a reference element and then transformed as described in Section 4.4. In addi-
tion to this geometrical transformation it is necessary to perform a permutation
(re-ordering) of the basis functions prior to global assembly. The purpose of this
permutation is to guarantee that there exists a unique, global definition of the i-th
basis function on a given edge or face. The details of this permutations are differ-
ent for each element type and for each form, hence the details are implemented in
different concrete classes as illustrated in Figure 8.

Permutation

HexPermutation PrismPermutation TetPermutation

Hex0FormPermutation

Hex1FormPermutation

Hex2FormPermutation

Prism0FormPermutation

Prism1FormPermutation

Prism2FormPermutation

Tet0FormPermutation

Tet1FormPermutation

Tet2FormPermutation

Fig. 8. Permutation class diagram

The Permutation class is an abstract interface designed to allow the user to take
local arrays and matrices, computed by the BilinearForms class, and reorder their
contents to conform to a global standard. Our implementation of the Permutation
class works only for our assumed global standard, if a client program requires some
other global standard then a new concrete Permutation class needs to be derived
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for this particular standard. We have adopted a standard ordering procedure for
the degrees of freedom on edges and faces that is based on the global integer IDs of
the vertices that define the edge or face. Our standard for edges is that an edge is
directed from low global vertex ID to high global vertex ID, this global orientation is
independent of local ordering of element vertices. Our standard for faces is to define
a u−v coordinate system with the origin at the face vertex with lowest global vertex
ID, the u axis is the edge connecting the origin to the next lowest global vertex ID,
and the v axis is the other edge associated with the origin. The face normal is in
the u× v direction. This gives every face in the mesh an global orientation that is
independent of local ordering of element vertices. To summarize, the BilinearForm
class computes local mass/stiffness matrices and load vectors according to a local
element point of view, the Permutation class performs rotations and reflections on
these local matrices and vectors to permute the contents to the global standard.
The global interface of the permutation class is shown in Table XI.

Table XI. Interface of the Permutations class
Method Description

createElementPermutation() create permutation for a given element
permuteVector() apply permutation to a vector

permuteMatrix() apply permutation to a matrix
getNumDofPerEdge() number of dof in edge
getNumDofPerFace() number of dof in face

getNumDofPerCell() number of dof in cell
getEdgeDofArray() get index array of dof in edge

getFaceDofArray() get index array of dof in face
getCellDofArray() get index array of dof in cell

In general, an element can have degrees of freedom associated with its vertices,
edges, faces and interior. Of these, only the first three are ever shared between two
elements, and the sharing of vertex degrees of freedom is trivial. Therefore we need
only concern ourselves with the possible reorientation of edge and face based degrees
of freedom. We simply enumerate the possible permutations that can be applied,
and given the specific global vertex ID’s apply the proper permutations. For edges,
there are only two cases to consider: the edge is either reversed, or it remains
the same. For faces, we employ the symmetry group of a general n-dimensional
polygon. For our library, this implies the consideration of both triangular and
quadrilateral faces. In general, an n dimensional polygon will have 2n symmetry
operations, n reflections and n rotations, and this is precisely what is implemented
in our concrete Permutations classes These cases are enumerated in Tables XII and
XIII.

As an example, consider a 1-form basis of order 3 on a hexahedral mesh. There
will be 12 degrees of freedom on each face of the mesh, and we need as global
standard as to the precise location and direction of the i-th interpolatory degree
of freedom on every face. We have two hexahedral elements that share a face, the
shared face is defined by the global IDs 2,5,8, and 11. We define a global orientation
of this shared face as follows: begin with the lowest integer ID in the face, then
traverse cyclically through the list by proceeding to the lowest neighbor of the
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Table XII. Symmetry operations for triangular faces
Operation Description

R0 Rotation of 0 degrees (Identity)

R120 Rotation of 120 degrees

R240 Rotation of 240 degrees

V Reflection about vertical axis

D1 Reflection about main diagonal

D2 Reflection about second diagonal

Table XIII. Symmetry operations for quadrilateral faces
Operation Description

R0 Rotation of 0 degrees (Identity)

R90 Rotation of 90 degrees
R180 Rotation of 180 degrees
R270 Rotation of 270 degrees
V Reflection about vertical axis
H Reflection about horizontal axis

D1 Reflection about main diagonal
D2 Reflection about second diagonal

lowest integer ID. In this example, the global orientation for the shared face will be
2,5,11,8. This defines the u and v directions of the 1-form degrees of freedom on
the face, as well as the ordering of the degrees of freedom. Figure 9 gives a visual
example of the required permutations. In this figure the letters a,b,c,... denote
the ordering of the basis functions as viewed from the left element, from the global
standard, and the right element.

Fig. 9. Example of facial permutation. The center face is the global standard ordering of the

1-form degrees of freedom, determined solely by the global vertex ID’s of the face. The other faces

show the degrees of freedom, from a local point of view, as viewed by the two elements that share

this face.

In addition to reordering local arrays and matrices, the permutation class handles
the local integer IDs for the degrees of freedom associated with the sub-simplex of an
element. This information is obtained by the member functions getEdgeDofArray(),
getFaceDofArray() and getCellDofArray(). These methods proved the user with an
integer array containing the local integer IDs for the particular sub-simplex that
is queried. This information is useful when applying boundary conditions to the
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sub-simplices of mesh elements. The following piece of code shows the usage of
such methods in the setting of Dirichlet boundary conditions. The goal is to apply
a functional value to the degrees of freedom associated with the bounding surface
of a mesh. Since the mesh is 3-dimensional, the bounding surface is referenced by
the surface faces of mesh elements. In general, a face can have degrees of freedom
on its vertices, along its edges and internal to the face itself.

// ---------------------------------------------------------------

// Boundary conditions

// ---------------------------------------------------------------

for (int i = 0; i < mesh->getNumBoundaryFaces(); ++i)

{

const BFaceInfo & info = mesh->getBoundaryFaceInfo(i);

R3 nodes[8]; // enough nodes for all the element types

int cellId = info.cellId_;

mesh->getElement(cellId,nodes);

element->setNodes(nodes);

pForm->project(poisson_u,localVector);

const int* nodeConnectivity = mesh->getNodeConnectivity(cellId);

permutation->createElementPermutation(nodeConnectivity);

permutation->permuteVector(localVector);

mesh->getMapping(cellId,

numDofPerNode,

numDofPerEdge,

numDofPerQFace,

numDofPerTFace,

numDofPerCell,

mapping);

// -----------------------------------------------------------

// Process dof associated with face nodes

// -----------------------------------------------------------

int numNodes = info.numNodes_;

for (int k = 0; k < numNodes; ++k)

{

int L = info.nodeIds_[k];

applyDirichlet(A,b,x,mapping[L],localVector[L]);

}

// -----------------------------------------------------------

// Process dof associated with face edges

// -----------------------------------------------------------
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int numEdgeDof = permutation->getNumDofPerEdge(info.localId_);

if ( numEdgeDof > 0 )

{

int* edgeDofArray = new int[numEdgeDof];

assert( edgeDofArray != 0 );

int numEdges = info.numNodes_;

for (int k = 0; k < numEdges; ++k)

{

permutation->getEdgeDofArray(info.edgeIds_[k],edgeDofArray);

for (int l = 0; l < numEdgeDof; ++l)

{

int L = edgeDofArray[l];

applyDirichlet(A,b,x,mapping[L],localVector[L]);

}

}

delete [] edgeDofArray;

}

// -----------------------------------------------------------

// Process dof associated with face interior

// -----------------------------------------------------------

int numFaceDof = permutation->getNumDofPerFace(info.localId_);

if ( numFaceDof > 0 )

{

int* faceDofArray = new int[numFaceDof];

assert( faceDofArray != 0 );

permutation->getFaceDofArray(info.localId_,faceDofArray);

for (int k = 0; k < numFaceDof; ++k)

{

int L = faceDofArray[k];

applyDirichlet(A,b,x,mapping[L],localVector[L]);

}

delete [] faceDofArray;

}

}
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4.6 Poisson driver

The following sample code illustrate a driver for assembling the global stiffness
matrix and load vector for the following Poisson problem

−∇ (σ∇u) = f,

where σ is a local constant diffusion tensor. We assume the mesh consists of linear
tetrahedral elements. For this problem we use a discrete 0-form of degree 3 with
a set of equidistant interpolatory points. To make the exposition clear, we have
omitted all the details not related to the mathematical aspects of the finite element
method.

// ---------------------------------------------------------------

// CREATE FINITE ELEMENT OBJECT

// ---------------------------------------------------------------

int degree = 3;

Element3D * element = new Tetrahedron(1);

p0FormBase * pForm = new Tet0FormSL(degree);

IntRule3D * intRule = new TetrahedronIntRule(2*degree+1);

Permutation * perm = new Tet0FormPermutation((Tet0FormBase *) pForm);

Bilinear0Form * fem = new Bilinear0Form;

fem->setIntRule(intRule);

fem->setpForm(pForm);

fem->setElement(element);

fem->initialize();

pForm->setElement(element);

// ---------------------------------------------------------------

// INITIALIZE SOME VARIABLES

// ---------------------------------------------------------------

int dim = pForm->getDim();

int numDofPerNode = 0;

int numDofPerEdge = 0;

int numDofPerFace[6];

int numDofPerCell = 0;

pForm->getConnectivity(numDofPerNode,

numDofPerEdge,

numDofPerFace,

numDofPerCell);

int numDofPerQFace = 0;
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int numDofPerTFace = numDofPerFace[0];

int numNodes = mesh->getNumNodes();

int numEdges = mesh->getNumEdges();

int numQFaces = mesh->getNumQFaces();

int numTFaces = mesh->getNumTFaces();

int numFaces = numQFaces + numTFaces;

int numCells = mesh->getNumCells();

int numDofs = numNodes*numDofPerNode +

numEdges*numDofPerEdge +

numQFaces*numDofPerQFace +

numTFaces*numDofPerTFace +

numCells*numDofPerCell;

// ---------------------------------------------------------------

// ALLOCATE LOCAL BUFFERS

// ---------------------------------------------------------------

int * Map = new int[dim]; assert( Map != 0 );

double * Vec = new double[dim]; assert( Vec != 0 );

double * Mat = new double[dim*dim]; assert( Mat != 0 );

// ---------------------------------------------------------------

// ASSEMBLE STIFFNESS MATRIX AND RIGHT HAND SIDE

// ---------------------------------------------------------------

CSRmat A; A.beginAssembly(numDofs,numDofs);

for (int cellId = 0; cellId < numCells; ++cellId)

{

R3 nodes[4];

mesh->getElement(cellId,nodes);

element->setNodes(nodes);

fem->getLoadVector(ffunction,Vec);

fem->getStiffnessMatrix(D[cellId],Mat);

const int * nodeConnectivity = mesh->getNodeConnectivity(cellId);

perm->createElementPermutation(nodeConnectivity);

perm->permuteVector(Vec);

perm->permuteMatrix(Mat);

mesh->getMapping(cellId,

numDofPerNode,

numDofPerEdge,

numDofPerQFace,
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numDofPerTFace,

numDofPerCell,

Map);

for (int k = 0; k < dim; ++k) b[Map[k]] += Vec[k];

A.addSubBlock(dim,Map,Mat);

}

It is important to observe that after performing a local permutation of the local
stiffness matrix and load vector, we still need a mapping that relates local degrees
of freedom with global degrees of freedom. This mapping is obtained from our 3D
mesh class. As in the local ordering, the global ordering scheme lists the degrees
of freedom associated with the vertices first, followed by those associated with the
edges, and so on. However, a different mapping scheme could be used.

4.7 Computation of errors

The computation of errors can be a very useful tool for debugging purposes. They
can be used to determine the accuracy of the finite element approximation whenever
the exact solution of the problem is known; or to validate the numerical rates of
convergence with those predicted by theoretical estimates. We have included the
methods getUError() and getQError() in the bilinear form interface to compute the
local error of the variable and its exterior derivative. These errors are computed in
the L2 norm.

The following code illustrates the use of this methods. We assume that the linear
system has already been solved and that the approximated solution is contained in
x. Observe that after gathering the degrees of freedom of a particular element in
a local vector, we need to apply the inverse of the permutation and then compute
the errors.

// ------------------------------------------------------------

// COMPUTE APPROXIMATION ERRORS IN THE L2 NORM

// ------------------------------------------------------------

double errorPotential = 0.0;

double errorGradient = 0.0;

for (int cellId = 0; cellId < numCells; ++cellId)

{

R3 nodes[4];

mesh->getElement(cellId,nodes);

element->setNodes(nodes);

// ----------------------------------------------------------

// Compute contribution of element i to the global error

// ----------------------------------------------------------

const int* nodeConnectivity = mesh->getNodeConnectivity(cellId);
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permutation->createElementPermutation(nodeConnectivity);

mesh->getMapping(cellId,

numDofPerNode,

numDofPerEdge,

numDofPerQFace,

numDofPerTFace,

numDofPerCell,

mapping);

for (int k = 0; k < dim; ++k) localVector[k] = x[mapping[k]];

permutation->permuteVector(localVector,INVERSE_PERMUTATION);

errorPotential += fem->getUError(ufunction,localVector);

errorGradient += fem->getQError(dufunction,localVector);

}

cout << "Errors = " << sqrt(errorPotential) << " "

<< sqrt(errorGradient) << endl;
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5. VALIDATION

In this section we perform several computational experiments to verify the theo-
retically predicted rates of convergence. Since we compare computed solutions to
exact solutions, by necessity the geometry must be trivial. Only a few of the many
validation tests we performed are presented below.

5.1 Poisson Equation

The Poisson equation corresponds to the case p = 1 in (1)-(4). Here u is a 0-form
potential-like quantity and j is a 2-form flux-like quantity. The operator ?α can be
interpreted as the dielectric constant in the case of electrostatics, permeability in
the case of magnetostatics, thermal conductivity in the case of heat transfer, etc.
The boundary conditions on ΓD, ΓN , and ΓM correspond to the standard Dirichlet,
Neumann, and Robbins boundary conditions, respectively.

−∇α · (∇φ) = f in Ω, (29)

φ = s on ∂ΩD,

∇φ · n̂ = n on ∂ΩN .

In this numerical example we solve the above problem on a cubic domain using
hexahedral elements subject to the Dirichlet boundary condition. We choose an
exact solution

φ = cos(x) sin(y) exp(z) (30)

and insert this into (29) to form the corresponding source function f . We use
Bilinear0Form methods getStiffnessMatrix() and getLoadVector() to form the local
stiffness matrix and the local load vector for every element in the mesh. Given these
local matrices and local vectors, the standard finite element procedure is used to
assemble a global system of the form

Ax = b, (31)

where A is the global stiffness matrix, b is the global load vector, and x is the
unknown vector of finite element coefficients. The linear system is solved via a
conjugate gradient algorithm.

In Figure 10 we show the computed L2 error versus element size h on a log− log
scale for 0-form basis functions of degree 1 through 4. The slopes of the lines
(based on a least-squares fit of the data points) are (2.0000, 2.9939, 3.9914, 4.9692)
indicating the optimal convergence rate of k + 1.

5.2 Vector Helmholtz

The vector Helmholtz equation corresponds to the case p = 2 in (1)-(4) with the
exception that we add a −ω2 term so that the problem corresponds to a hyperbolic
wave equation. Here both u and j are 1-form field-like quantities and σ, ψ, and Φ
are 2-form flux-like quantities. In the case of Maxwell’s equations u and j are the
electric and magnetic fields, Ψ and σ are the electric and magnetic flux densities, the
source term Φ is the current density, and the star operators ?α and ?γ correspond
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Fig. 10. Polynomial convergence of h-refined solutions of the Poisson equation using finite element

0-form basis functions of degree 1 through 4.

to 1/µ and ε, respectively. The boundary conditions on ΓD and ΓN correspond to
~n× u = 0 and ~n×∇× u = 0, and the boundary condition on ΓM is an impedance
boundary condition. In standard form we have

∇×
1

µ
∇× ~E − εω2 ~E = ~f, (32)

where f is a source term consisting of electric or magnetic currents, and ~E is the
time-harmonic complex-valued electric field. In practice we use a prescribed voltage
boundary condition ~n× ~E = v(t) or a radiation boundary condition ~n×∇× ~E =
P (E) where P (E) is chosen to approximate the Sommerfeld radiation boundary
condition.

In this computational experiment we validate the expected rates of convergence
for h-refinement by choosing a simple problem with a known, smooth solution.
The computational domain is a unit cube, discretized via a series of unstructured
tetrahedral meshes. We choose an exact solution

~E =
(

0, 0,
(

x− x2
)2 (

y − y2
)2 (

z − z2
)2

)

, (33)

and insert this into (32) to form the corresponding source function ~f . We use
Bilinear1Form methods to form the local matrices and the local load vector for every
element in the mesh. Given these local matrices and local vectors, the standard
finite element procedure is used to assemble a global system of the form

(

A − ω2B
)

x = b, (34)
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where A is the global stiffness matrix, B is the global mass matrix, b is the global
load vector, and x is the unknown vector of finite element coefficients. The linear
system is solved via an ILU preconditioned GMRES algorithm. The ILU precon-
ditioned GMRES code is not part of the FEMSTER distribution.

In Figure 11 we show the computed L2 error versus element size h on a log− log
scale for 1-form basis functions of degree 1 through 6. The slopes of the lines (based
on least-squares fit of the last three data points) are (0.98, 1.97, 2.97, 3.97, 4.97, 5.98)
indicating the optimal convergence. It is interesting to note that for this particular
problem using a 6th order basis on a 1440 element mesh yields a solution accurate
to 10 significant digits, where a comparable solution using a 1st order basis would
require a mesh consisting of billions of elements. Naturally, we cannot expect this
type of accuracy for problems with re-entrant corners and associated field singu-
larities, but high-order approximation can be combined with adaptive h-refinement
for such problems.
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Fig. 11. Polynomial convergence of h-refined solutions of the vector Helmholtz equation using

finite element 1-Form basis functions of degree 1 through 6.

5.3 Acoustic Eigenvalues

The acoustic problem corresponds to case p = 3 (1)-(4) with the exception that
the source term Φ is zero and we are seeking the fundamental eigensolutions of
the operator. Here u is a 2-form flux-like quantity and j is a 0-form potential-
like quantity. In the case of acoustics the operator ?α is density, in elasticity
it corresponds to a combination of the Lamé constants; λ + 2µ. The boundary
condition on ΓD is a zero-flux condition, while the condition on ΓN is a zero-
pressure condition. In standard notation we have
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−∇(∇ · ~U) = ω2~U in Ω, (35)

~U · ~n = 0 on ∂ΩD,

∇ · ~U = 0 on ∂ΩN ,

where ~U is the velocity and ω is the resonant frequency.
In this computational example we compute the eigenvalues of the above equation

on a fixed mesh for various values of polynomial degree k. We choose a problem in
which the eigenmodes are known to be smooth, and thus we achieve the expected
exponential convergence. The computational domain is a unit cube with the exact
eigenvalues given by

ω2 = π2
(

l2 +m2 + n2
)

, (36)

with l,m, n 6= 0. The domain is discretized using a 6 element tetrahedral mesh,
and equation (35) is discretized using 2-form basis functions, with the required
discrete bilinear forms computed by the Bilinear2Form methods getMassMatrix()
and getStiffnessMatrix(). This results in a generalized linear eigenvalue problem

Ax = ωh
2Bx, (37)

where A and B are the global 2-form stiffness and mass matrices, respectively. The
vector x represents the unknown coefficients of the basis function expansion of the
eigenmode ~U , and ωh is the computed resonant frequency of the eigenmode.

In this example we use Matlab to compute the entire set of eigenvalues of (37).
The model equation (35) has an infinite set of zero-valued eigenvalues, correspond-
ing to solenoidal solutions. The discrete spectrum therefore has a large number of
zero-valued (to machine precision) eigenvalues. While this is evidence that our dis-
cretization correctly models the kernel of the grad-div operator, these eigenvalues
are of no interest to us, so we search the computed spectrum for the first non-zero
eigenvalue which according to (36) should have the value 3π2. In Figure 12 we plot
the log of the error |ω − ωh| of the first non-zero eigenvalue versus k, the degree
of the finite element approximation. We see the expected exponential convergence.
The plateaus in the convergence are due to the symmetry of the fundamental mode.
For very large problems in which it is not feasible to use Matlab, it is possible to
develop iterative eigenvalue solvers that quickly converge to the smallest non-zero
eigenvalues [White and Koning 2002].
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Fig. 12. Exponential p-convergence of the 2-form discretization of the acoustic equation.
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6. ELECTROMAGNETICS APPLICATIONS

In this section present some practical applications of the Discrete Differential Forms
approach. These applications range from electrostatics, electromagnetic eigenvalue
problems, to full-wave time-dependent electromagnetic waves. As these are real
application problems, we do not know the exact solution so the error in the nu-
merical approximation is not known. We do not provide detailed information on
each of these applications, rather the purpose of this section to provide a high-level
overview of the types of problems that can be solved via the Discrete Differential
Forms methodology.

6.1 Electrostatics

As an example electrostatics problem we consider the computation of resistance in
a integrated circuit. The appropriate equation is Poisson’s equation (29) with α
representing the conductivity and Φ representing the electrostatic potential. Given
boundary conditions on Φ, we solve for Φ in the interior of the problem and then
post-process to determine the current J = α∇Φ. It is a simple matter to then
integrate J to yield the total current and therefore the resistance. The potential Φ is
approximated by a 0-form basis, the current density J by a 1-form basis. The source
term f is zero for this problem. The complete geometry of the problem is shown
in Figure 14, and a close-up view of the geometric is shown in 13. In the close-up
view, the rectangular pads are 20µm by 30µm. There are several different materials
present in this problem, the bulk semiconductor substrate (medium conductivity),
a thin epitaxial layer (Low conductivity), and well (high conductivity). There are
also numerous perfectly conducting pads on the top surface, these are where the
voltage boundary conditions are applied. The computational mesh was a very
simple Cartesian mesh consisting of approximately 2 million elements.

We solved this problem many times with many different boundary conditions,
typically one pad is held at +1V, another pad is held at -1V, and all other pads are
grounded. Alternatively, we can leave the pads “floating” rather than grounded,
and this can have a significant effect on the resistance. In Figures 15 and 16 we
show the computed electrostatic potential for the boundary condition +1V applied
to one pad and -1V applied to 3 neighboring pads. It should be noted that CASC’s
algebraic multigrid solver BoomerAMG was used to solve the resulting system of
equations.

6.2 Eigenvalues

As an example electromagnetic eigenvalue problem we compute the resonant fre-
quencies of an accelerator induction cell. Induction cells are a key component of
linear accelerators, they are used to accelerate the electron beam by providing a
large (e.g. 1MV) potential across a small gap. The passing electron beam can,
however, induce unwanted resonant modes in the cell. Designers can choose the
shape and the material loading of the induction cell to minimize the interaction
between the unwanted resonant modes and the beam. In Figure 17 we show the
exterior of the computational mesh used for the simulation, and in 18 we show a
close-up cut-away view of the accelerating gap. The interior consists of both vac-
uum and dielectric regions. Note the curvature of the walls of this device, it would
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Fig. 13. Geometry for the semiconductor resistance test problem showing the arrangement of
conducting pads

be difficult to obtain accurate computed fields using an FDTD-type method.

The PDE for this problem is given by (32) with zero source function f , we are
interested in computing the resonant frequencies ω and the corresponding eigen-
modes. We discretize (32) using 1-form basis functions, resulting in a generalized
eigenvalue problem with exactly the same form as the acoustic eigenvalue problem
defined in Section 5.3. However, unlike the results presented in Section 0?? we do
not use Matlab to compute the entire spectrum. Instead we use a novel iterative
procedure designed especially for this type of electromagnetic eigenvalue problem
[White and Koning 2002]. This procedure efficiently computes the 20 smallest
non-zero eigenvalues and corresponding eigenvectors.

In Figures 19 - 22 we show the computed eigenmodes corresponding to the 1st,
5th, 12th, and 20th smallest eigenfrequencies. It is the magnitude of the induced
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Fig. 14. Close-up view of materials present in the semiconductor resistance problem showing the
substrate, the epitaxial layer, the well, and the conducting pads.

Fig. 15. Electrostatic potential versus depth in the semiconductor substrate, for a particular slice

through the mesh. The color denotes the value of the electrostatic potential, ranging from red
(+1) to blue (-1).
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Fig. 16. Electrostatic potential in the x-y plane in the epitaxial layer below the conducting pads.

The color denotes the value of the electrostatic potential, ranging from red (+1) to blue (-1).

surface current density that is displayed. It is interesting to note than some modes
such as the 1st and the 20th have maximum field intensity in the accelerator gap
and hence will interact strongly with the electron beam, while other mode such as
the 5th and the 12th have zero field in the gap and will not interact with the beam.

6.3 Maxwell’s Equations

The main use of the FEMSTER framework is time-domain computational electro-
magnetics. Typically the second order wave equation for the electric field is solved:

ε
∂2

∂t2
~E = −∇× µ−1∇× ~E −

∂

∂t
~J − σ

∂

∂t
~E in Ω, (38)

where ε and µ are the tensor electric permittivity and magnetic permeability re-
spectively, and σ is the electrical conductivity. The boundary conditions on ~E are
typically a combination of perfect conducting, impedance, or radiation boundary
conditions. The discretized wave equation is

Bẍ = −Ax − Cẋ − ẏ, (39)

where A is the stiffness matrix and B and C are mass matrices involving the
permittivity and conductivity, respectively. These matrices are similar to those
used in the frequency domain Helmholtz equation in Section 5.2. In (39), time
is discretized using the second-order accurate leap-frog method, the stability and
conservation properties are discussed in [Rodrigue and White 2001]. Naturally, it is
possible to use other more accurate time stepping methods such as 4th order Runge-
Kutta, this is an area of future research. Note that in general the time stepping
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Fig. 17. Exterior of the computational mesh used for the resonant mode calculations. The colors
are to aid in visualization only, they do not represent anything physical.

algorithm will require that a linear system of equations be solved at every time step.
It is well known that for linear basis 1-form basis functions on a Cartesian grid the
trapezoidal rule can be used to evaluate the bilinear forms, yielding a diagonal
mass matrix B. This is often referred to as “mass lumping”. This seemingly crude
approximation yields no degradation of accuracy, in fact the discrete equations are
identical to the popular Finite Difference Time Domain method. However, for non-
Cartesian grids mass lumping cannot be applied without severe degradation, in fact
the consistency of this approach is debatable. Fortunately, the mass matrix B is
very well conditioned even for distorted grids, the matrix can be solved in O(n)
operations using standard conjugate gradient algorithms [Koning et al. 2000].

6.3.1 Microwave Devices. Our first example of a transient simulation is of a
three conductor coplanar waveguide which consists of a 2 micrometer thick metal



Discrete Differential Forms · 41

induction cell layout #3
TrueGrid view

Z

Y

X

Fig. 18. Interior of the computational mesh used for the resonant mode calculations.

deposited on silicon. The outer conductors can be considered ground, and the
inner conductor is the signal conductor. For high frequency signals, the coplanar
waveguide configuration is superior to the traditional microstrip, as the fields are
confined to the small region between the conductors. The domain is discretized
using hexahedral element mesh. Figure 23 shows the x-y plane containing the
metal.

We excite the problem with a time-varying current source at the left end of the
waveguide. We are interested in how the induced voltage pulse travels down the
guide. We run the simulation for 6000 time steps. The induced currents on the
conductors can be measured, and this data can be post-processed to yield input
impedance, S-parameters, and other useful characteristics of the waveguide. The
voltage input and output for the transmission line is shown in Figure 24. In Figure
25 we show snapshots of the computed magnetic field at diffeeent instants of time.
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Fig. 19. The 1st eigenmode, 85.6 MHz.

Fig. 20. The 5th eigenmode, 181.9 MHz.
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Fig. 21. The 12th eigenmode, 271.9 MHz

Fig. 22. The 20th eigenmode, 349.5 MHz.
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Fig. 23. Coplanar waveguide geometry (not to scale).

This simulation was a full-wave three-dimension simulation, in this figure we are
examing the magnetic field in the mid-plane of the microstrip.

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

1.5

Time step in pico seconds

N
or

m
al

iz
ed

 v
ol

ta
ge

Voltage in
Voltage out

Fig. 24. Input and output voltage for the coplanar waveguide. The dashed lines is the voltage at
the input port, the solid line is the voltage at the output port. Note the reflections due to the
imperfectly matched loads.

The second example solution of Maxwell’s equations is of a planar microstrip
inductor. Planar microstrip inductors are used in microwave filters, amplifiers, and
oscillators. In the standard circuit design process the DC values of inductance are
used in the circuit design, however the validity of this approximation decreases
with increasing operational frequency. While the FEMSTER library could be used
to compute the DC inductance, here we compute the transient response to the
inductor due to a very broadband excitation. This particular inductor consists of 2
micrometer thick metal deposited on silicon in a square spiral configuration. The
overall width of the inductor is the same as the coplanar waveguide illustrated in
Figure 23, in fact these two devices are designed to be compatible. For analysis
purposes one end of the inductor is short-circuited, at the other end we apply a
time varying current source. The current source has the form of the integral of a
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Fig. 25. Snapshots of the computed magnetic field for the coplanar microstrip waveguide. The

psuedocolor represents the z-component of the magnetic field vector. The contours represent the

magnetic field energy density. Note that while most of the field is confined to the space between

the conductors, the there is some radiation particularily at the right end of the waveguide.
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Gaussian, it starts with value zero at time zero and smoothly grows to have value 1.
While in practice the design engineer may be interested in the induced voltage vs.
time at the input port, here we run the simulation for 8000 time steps and present
only the final steady-state field configuration. Figures 26 - 28 show the magnitude
of the z-component of the magnetic field in the x, y, and z planes, respectively. We
note that, as expected, the field is largest in the center of the inductor. However
the fields are non-zero outside of the inductor and there will be significant coupling
to adjacent circuit elements.

Fig. 26. Magnetic field z-component magnitude in x-plane.

Fig. 27. Magnetic field z-component magnitude in y-plane.
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Fig. 28. Magnetic field z-component magnitude in x-plane.

6.3.2 Optical Devices. For the first simulation of an optical device, we computed
electromagnetic fields in a bent single mode optical fiber. A 3-dimensional hexahe-
dral mesh is used for the simulation, with approximately 3 million elements. Due to
the very fine mesh used to resolve the fiber core, 1st order basis functions are used.
A TE01 wave is launched at one end of the 5 micrometer radius fiber core, and
the other end is terminated with a Maxwellian perfectly matched layer. The fiber
is designed to support a 1.55 micrometer wavelength mode and is 10 wavelengths
long with a bend radius of 19.73 micrometers. The purpose of the simulation is to
determine how much, if any, of the electric field escapes the fiber due to the sharp
bend. The simulation is run for 3000 time-steps with dt = 3.3e−16s. This is a
full-wave, explicit time-domain simulation. Snapshots of the fiber core electric field
intensity are shown in Figures 29 - 31.

As the second example of an optical device, we compute the fields in a so-called
“holey” fiber. These optical fibers have a very complex structure permitting broad-
band single-mode operation. In addition the fiber is larger than traditional single-
mode fibers, enabling greater power handling which is important for fiber amplifier
applications. For more information on holey fibers see [Broeng et al. 1999]. The
computational mesh for the holey fiber problem is illustrated in Figure 32. The
cylindrical rods are glass, the surrounding medium is of a very low dielectric. The
cylinders are 1.92µm radius separated by 3.2µm. The mesh was approximately 10
wavelengths long in the propagating direction, and terminated with a PML. Ideally,
the mesh would be significantly longer in order to better approximate an infinite
fiber.

The next example is of a photonic bandgap waveguide with a 90-degree right
angle bend. The photonic bandgap region consist of a periodic array of rods in
a background medium. The dielectric constant of the rods, the diameter of the
rods, and the rod spacing are chosen such that waves of a particular frequency are
prohibited from propagating. Hence the term bandgap. The waveguide is formed
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Fig. 29. Bent optical fiber electric field data after 10 time steps.

Fig. 30. Bent optical fiber electric field data after 24 time steps.
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Fig. 31. Bent optical fiber electric field data after 57 time steps.

by removing a line of rods. A good exposition on photonic bandgap structures is
given in [Joannopoulus et al. 1995]. In this particular application the rods have a
0.1µm radius and are 0.6µm apart. Our computational mesh is shown in Figure 36.
This a conforming 3D hexahedral mesh that is one element thick in the z-direction,
simulating a 2D problem. The different colors on the boundary of the problem
represent fictitious materials used in the PM.

The simulation begins with a plane wave entering the waveguide from the left.
The wave propagates in the waveguide making a nice 90-degree turn. This is not
possible with standard optical waveguides, as there would be significant scattering
from the 90-degree bend and only a fraction of the energy would actually come out
of the far end of the waveguide. In Figure 37 - 40 we show snapshots of the electric
field intensity. Note that while the fields are non-zero outside of the waveguide,
these are evanescent fields and the device is behaving as a waveguide.

6.3.3 Accelerator Wakefield’s. As a final example, we compute the wake-fields
in a generic linear accelerator. The accelerator consists of a series of induction
cells approximately one meter in diameter. An electron bunch travels down the
center of the accelerator, receiving a 1 MEV boost as it passes by each induction
cell. The traveling electron bunch generates electromagnetic waves which may
resonate within the induction cell for a very long time. These waves are referred
to as the wake-field. This wake-field can interfere with the next electron bunch
causing a beam instability. In this simulation we model the electron bunch as a
rigid Gaussian beam, i.e. we are simply interested in the wake-field and not in
the precise motion of the electrons. The accelerator is modeled by a 3-dimensional
hexahedral mesh with approximately 500,000 elements, with perfectly conducting
walls and a Maxwellian perfectly matched layer at each end. In this simulation we
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Fig. 32. Computational mesh for the holey fiber simulation..

solve for both the electric and magnetic fields in a leapfrog manner similar to the
FDTD method, except that we solve a finite element mass matrix at every time
step. We do this simply because the magnetic field is the more intuitive field to
visualize for this problem. The surface magnetic field is illustrated in Figures 41 -
44.
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Fig. 33. Electric field intensity in the holey fiber at slice z=29.

Fig. 34. Electric field intensity in the holey fiber at slice z=73.
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Fig. 35. Electric field intensity in the holey fiber at slice z=99. At this position the electric fields

have nearly converged to the steady-state solution. Note that most of the electric field is contained

in the space between the glass rods. While the field is non-zero beyond the rods, these fields are

evanescent in nature similar to the fields in the cladding of a standard single-mode optical fiber.
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Fig. 36. Computational mesh for the photonic bandgap waveguide simulation.
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Fig. 37. Electric field intensity in the photonic bandgap waveguide at t=19.

Fig. 38. Electric field intensity in the photonic bandgap waveguide at t=36.
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Fig. 39. Electric field intensity in the photonic bandgap waveguide at t=76.

Fig. 40. Electric field intensity in the photonic bandgap waveguide t=96.
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Fig. 41. Snapshot of the electric current induced on the walls of a linear accelerator due to a
Gaussian electron bunch. At this instant the bunch, traveling from right to left, is approximately

25 percent of the way down the accelerator.

Fig. 42. Snapshot of the electric current induced on the walls of a linear accelerator due to a

Gaussian electron bunch. At this instant the bunch, traveling from right to left, is approximately
50 percent of the way down the accelerator.
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Fig. 43. Snapshot of the electric current induced on the walls of a linear accelerator due to a
Gaussian electron bunch. At this instant the bunch, traveling from right to left, is approximately
90 percent of the way down the accelerator..

Fig. 44. Snapshot of the electric current induced on the walls of a linear accelerator due to a
Gaussian electron bunch. At this instant the bunch, traveling from right to left, has exited the

accelerator. Note that the induction cells resonate for a long time after the electron bunch has

passed by.
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7. CONCLUDING REMARKS

The FEMSTER finite element class library described in this paper is unique in
several respects. First,it is based upon the language of differential forms. This
language provides a unified description of a great variety of PDE’s, and thus leads
us directly to a concise and abstract interface to our finite element methods. This
language also unifies the seemingly disparate Lagrange, H(curl) and H(div) basis
functions that are used in computational electromagnetics. Secondly, FEMSTER
utilizes higher-order elements, bases, and integration rules. Higher-order elements
are important for accurate modeling of curved surfaces. The use of higher-order
basis functions reduces the demands put upon mesh generation, e.g. a billion ele-
ment mesh is no longer required for a numerically converged solution. The FEM-
STER class library is ideally suited for researchers who wish to experiment with
unstructured-grid, higher-order solution of Poisson’s equation, the Helmholtz equa-
tion, Maxwell’s equations, and related PDE’s that employ the standard gradient,
curl, and divergence operators.
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